What does line of sight communication mean

Aerial base station placement in temporary-event scenarios

As the traffic demands have grown dramatically in recent years, so has the interest in developing novel solutions that increase the network capacity in cellular networks. The problem of capacity improvement is even more complex when applied to a dynamic environment during a disaster or temporary event. The use of aerial base stations has received much attention in the last ten years as the solution to cope with the dynamics of the changing environment and to supplement the ground infrastructure with extra capacity. Due to higher elevations and the possibility to place aerial base stations in close proximity to the user, path loss is significantly smaller in comparison to the ground infrastructure, which in turn enables high data capacity. We are studying the optimization problem of maximizing network capacity by proper placement of aerial base stations. To handle the changes in the dynamic radio environment, it is necessary to promptly solve the optimization problem. However, we show that the optimal placement of aerial base stations is the NP-hard problem and its solution is non-trivial, and thus, there is a need for fast and scalable optimization algorithms. This dissertation investigates how to solve the placement problem efficiently and to support the dynamics of temporary events. First, we propose a novel hybrid algorithm (Projected Clustering), which calculates multiple solutions based on the fast distance-based capacity approximation and evaluates them on the accurate SINR-based capacity model, avoiding sub-optimal solutions. Second, we propose a novel distributed, self-organized framework (AIDA), which conducts a decision-making process using only local knowledge, decreasing the network overhead and relaxing the requirements for communication between aerial base stations. During the formulation of the placement problem, we found that there is still considerable uncertainty with regard to air-to-ground propagation modeling. Since this aspect plays an important role in our analysis, we validated state-of-the-art air-to-ground propagation models by collecting real measurements and chose the most accurate model for the simulations.