What is a fluorescence chemosensor

Fluorescent Chemosensor for Detection of Water Pollutants

Hint

Swipe to navigate through the chapters of this book

2020 | OriginalPaper | Chapter

Authors: Annasamy Gowri, Arunkumar Kathiravan

Publisher: Springer Singapore

Abstract

Fluorescent chemosensors for detection of water pollutants (organic, inorganic and biological) are of primary importance due to the pressing need for safe drinking water. This chapter focuses on the application of fluorescence spectroscopy, an excellent analytical technique for sensing various water pollutants due to its improved sensitivity and operational simplicity. The recent advances in the development of fluorophores and the respective photophysical phenomena involved for selective detection of water pollutants including toxic metal ions and pathogens are discussed in detail. Furthermore, the future prospects of fluorescent sensors for rapid and on-site detection of water pollutants are presented.

To get access to this content you need the following product:

Springer Professional "Business + Technology"

With Springer Professional "Business + Technology" you get access to:

  • above 69,000 books
  • above 500 magazines

from the following fields:

  • Automobile + engines
  • Construction + real estate
  • Business IT + informatics
  • Electrical engineering + electronics
  • Energy + environment
  • Finance + Banking
  • Management + leadership
  • Marketing + sales
  • Mechanical engineering + materials
  • Insurance + risk

Try now for 30 days free of charge.

Springer Professional "Technology"

With Springer Professional "Technology" you get access to:

  • above 50,000 books
  • above 380 magazines

from the following fields:

  • Automobile + engines
  • Construction + real estate
  • Business IT + informatics
  • Electrical engineering + electronics
  • Energy + environment
  • Mechanical engineering + materials



Try now for 30 days free of charge.

Literature
go back to reference Forde, M., Izurieta, R., & Ôrmeci, B. (2019). Water and health. Water Quality in the Americas, p. 27. Forde, M., Izurieta, R., & Ôrmeci, B. (2019). Water and health. Water Quality in the Americas, p. 27
go back to reference Richardson, S. D., & Ternes, T. A. (2017). Water analysis: Emerging contaminants and current issues. Analytical Chemistry, 90 (1), 398-428. CrossRef Richardson, S. D., & Ternes, T. A. (2017). Water analysis: Emerging contaminants and current issues. Analytical Chemistry, 90 (1), 398-428. CrossRef
go back to reference Priiss, A., & Havelaar, A. (2001). The global burden of disease study and applications in water, sanitation and hygiene. Water Quality: Guidelines, Standards & Health, 43. Priiss, A., & Havelaar, A. (2001). The global burden of disease study and applications in water, sanitation and hygiene. Water Quality: Guidelines, Standards & Health, 43.
go back to reference Evans, A. E., Mateo-Sagasta, J., Qadir, M., Boelee, E., & Ippolito, A. (2019). Agricultural water pollution: key knowledge gaps and research needs. Current opinion in environmental sustainability, 36, 20-27. CrossRef Evans, A. E., Mateo-Sagasta, J., Qadir, M., Boelee, E., & Ippolito, A. (2019). Agricultural water pollution: key knowledge gaps and research needs. Current opinion in environmental sustainability, 36, 20-27. CrossRef
go back to reference Danner, M.C., Robertson, A., Behrends, V. and Reiss, J., 2019. Antibiotic pollution in surface fresh waters: Occurrence and effects. Science of The Total Environment. Danner, M.C., Robertson, A., Behrends, V. and Reiss, J., 2019. Antibiotic pollution in surface fresh waters: Occurrence and effects. Science of The Total Environment.
go back to reference Tallon, P., Magajna, B., Lofranco, C., & Leung, K. T. (2005). Microbial indicators of faecal contamination in water: a current perspective. Water, Air, and Soil pollution, 166 (1-4), 139-166. CrossRef Tallon, P., Magajna, B., Lofranco, C., & Leung, K. T. (2005). Microbial indicators of faecal contamination in water: a current perspective. Water, Air, and Soil pollution, 166 (1-4), 139-166. CrossRef
go back to reference Geissen, V., Mol, H., Klumpp, E., Umlauf, G., Nadal, M., van der Ploeg, M., et al. (2015). Emerging pollutants in the environment: a challenge for water resource management. International Soil and Water Conservation Research, 3 (1), 57-65. CrossRef Geissen, V., Mol, H., Klumpp, E., Umlauf, G., Nadal, M., van der Ploeg, M., et al. (2015). Emerging pollutants in the environment: a challenge for water resource management. International Soil and Water Conservation Research, 3 (1), 57-65. CrossRef
go back to reference Kumar, M., & Puri, A. (2012). A review of permissible limits of drinking water. Indian journal of occupational and environmental medicine, 16 (1), 40. CrossRef Kumar, M., & Puri, A. (2012). A review of permissible limits of drinking water. Indian journal of occupational and environmental medicine, 16 (1), 40. CrossRef
go back to reference Shannon, M.A., Bohn, P.W., Elimelech, M., Georgiadis, J.G., Marinas, B.J. and Mayes, A.M., 2010. Science and technology for water purification in the coming decades. In Nanoscience and technology: a collection of reviews from nature journals (pp. 337–346). Shannon, M.A., Bohn, P.W., Elimelech, M., Georgiadis, J.G., Marinas, B.J. and Mayes, A.M., 2010. Science and technology for water purification in the coming decades. In Nanoscience and technology: a collection of reviews from nature journals (pp. 337-346).
go back to reference Zulkifli, S. N., Rahim, H. A., & Lau, W. J. (2018). Detection of contaminants in water supply: a review on state-of-the-art monitoring technologies and their applications. Sensors and Actuators B: Chemical, 255, 2657-2689. CrossRef Zulkifli, S. N., Rahim, H. A., & Lau, W. J. (2018). Detection of contaminants in water supply: a review on state-of-the-art monitoring technologies and their applications. Sensors and Actuators B: Chemical, 255, 2657-2689. CrossRef
go back to reference Hameed, S., Xie, L. and Ying, Y., 2018. Conventional and emerging detection techniques for pathogenic bacteria in food science: A review. Trends in Food Science & Technology. Hameed, S., Xie, L. and Ying, Y., 2018. Conventional and emerging detection techniques for pathogenic bacteria in food science: A review. Trends in Food Science & Technology.
go back to reference Chen, W., Westerhoff, P., Leenheer, J. A., & Booksh, K. (2003). Fluorescence excitation - emission matrix regional integration to quantify spectra for dissolved organic matter. Environmental Science and Technology, 37 (24), 5701-5710. CrossRef Chen, W., Westerhoff, P., Leenheer, J. A., & Booksh, K. (2003). Fluorescence excitation - emission matrix regional integration to quantify spectra for dissolved organic matter. Environmental Science and Technology, 37 (24), 5701-5710. CrossRef
go back to reference Wasswa, J., Mladenov, N., & Pearce, W. (2019). Assessing the potential of fluorescence spectroscopy to monitor contaminants in source waters and water reuse systems. Environmental Science: Water Research & Technology, 5 (2), 370-382. Wasswa, J., Mladenov, N., & Pearce, W. (2019). Assessing the potential of fluorescence spectroscopy to monitor contaminants in source waters and water reuse systems. Environmental Science: Water Research & Technology, 5 (2), 370-382.
go back to reference Ahmad, S. R., & Reynolds, D. M. (1999). Monitoring of water quality using fluorescence technique: prospect of on-line process control. Water Research, 33 (9), 2069-2074. CrossRef Ahmad, S. R., & Reynolds, D. M. (1999). Monitoring of water quality using fluorescence technique: prospect of on-line process control. Water Research, 33 (9), 2069-2074. CrossRef
go back to reference Carstea, E. M., Bridgeman, J., Baker, A., & Reynolds, D. M. (2016). Fluorescence spectroscopy for wastewater monitoring: a review. Water Research, 95, 205-219. CrossRef Carstea, E. M., Bridgeman, J., Baker, A., & Reynolds, D. M. (2016). Fluorescence spectroscopy for wastewater monitoring: a review. Water Research, 95, 205-219. CrossRef
go back to reference Wu, D., Sedgwick, A. C., Gunnlaugsson, T., Akkaya, E. U., Yoon, J., & James, T. D. (2017). Fluorescent chemosensors: the past, present and future. Chemical Society Reviews, 46 (23), 7105-7123. CrossRef Wu, D., Sedgwick, A. C., Gunnlaugsson, T., Akkaya, E. U., Yoon, J., & James, T. D. (2017). Fluorescent chemosensors: the past, present and future. Chemical Society Reviews, 46 (23), 7105-7123. CrossRef
go back to reference Parkesh, R., Veale, E. B., & Gunnlaugsson, T. (2011). Fluorescent detection principles and strategies (pp. 229-252). Chemosensors: Principles, Strategies, and Applications. Parkesh, R., Veale, E. B., & Gunnlaugsson, T. (2011). Fluorescent detection principles and strategies (pp. 229-252). Chemosensors: Principles, Strategies, and Applications.
go back to reference Das, A. K., & Goswami, S. (2017). 2-Hydroxy-1-naphthaldehyde: a versatile building block for the development of sensors in supramolecular chemistry and molecular recognition. Sensors and Actuators B: Chemical, 245, 1062-1125. CrossRef Das, A. K., & Goswami, S. (2017). 2-Hydroxy-1-naphthaldehyde: a versatile building block for the development of sensors in supramolecular chemistry and molecular recognition. Sensors and Actuators B: Chemical, 245, 1062-1125. CrossRef
go back to reference He, L., Dong, B., Liu, Y., & Lin, W. (2016). Fluorescent chemosensors manipulated by dual / triple interplaying sensing mechanisms. Chemical Society Reviews, 45 (23), 6449-6461. CrossRef He, L., Dong, B., Liu, Y., & Lin, W. (2016). Fluorescent chemosensors manipulated by dual / triple interplaying sensing mechanisms. Chemical Society Reviews, 45 (23), 6449-6461. CrossRef
go back to reference Sun, X., Wang, Y., & Lei, Y. (2015). Fluorescence based explosive detection: from mechanisms to sensory materials. Chemical Society Reviews, 44 (22), 8019-8061. CrossRef Sun, X., Wang, Y., & Lei, Y. (2015). Fluorescence based explosive detection: from mechanisms to sensory materials. Chemical Society Reviews, 44 (22), 8019-8061. CrossRef
go back to reference De Silva, A.P., Moody, T.S., & Wright, G.D. (2009). Fluorescent PET (Photo Induced Electron Transfer) sensors as potent analytical tools. Analyst, 134 (12), 2385-2393. CrossRef De Silva, A.P., Moody, T.S., & Wright, G.D. (2009). Fluorescent PET (Photo Induced Electron Transfer) sensors as potent analytical tools. Analyst, 134 (12), 2385-2393. CrossRef
go back to reference J. Luo, Z. Xie, J.W.Y. Lam, L. Cheng, H. Chen, C. Qiu, H.S. Kwok, X. Zhan, Y. Liu, D. Zhu and B.Z. Tang, Chem. Commun. (2001) 1740-1741. J. Luo, Z. Xie, J.W.Y. Lam, L. Cheng, H. Chen, C. Qiu, H.S. Kwok, X. Zhan, Y. Liu, D. Zhu and B.Z. Tang, Chem. Commun. (2001) 1740-1741.
go back to reference Wu, J., Liu, W., Ge, J., Zhang, H., & Wang, P. (2011). New sensing mechanisms for design of fluorescent chemosensors emerging in recent years. Chemical Society Reviews, 40 (7), 3483-3495. CrossRef Wu, J., Liu, W., Ge, J., Zhang, H., & Wang, P. (2011). New sensing mechanisms for design of fluorescent chemosensors emerging in recent years. Chemical Society Reviews, 40 (7), 3483-3495. CrossRef
go back to reference Lee, M. H., Kim, J. S., & Sessler, J. L. (2015). Small molecule-based ratiometric fluorescence probes for cations, anions, and biomolecules. Chemical Society Reviews, 44 (13), 4185-4191. CrossRef Lee, M. H., Kim, J. S., & Sessler, J. L. (2015). Small molecule-based ratiometric fluorescence probes for cations, anions, and biomolecules. Chemical Society Reviews, 44 (13), 4185-4191. CrossRef
go back to reference Hong, Y., Lam, J. W., & Tang, B. Z. (2009). Aggregation-induced emission: phenomenon, mechanism and applications. Chemical Communications, 29, 4332-4353. CrossRef Hong, Y., Lam, J. W., & Tang, B. Z. (2009). Aggregation-induced emission: phenomenon, mechanism and applications. Chemical Communications, 29, 4332-4353. CrossRef
go back to reference Gowri, A., Vignesh, R., & Kathiravan, A. (2019). Anthracene based AIEgen for picric acid detection in real water samples (p. 117144). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. Gowri, A., Vignesh, R., & Kathiravan, A. (2019). Anthracene based AIEgen for picric acid detection in real water samples (p. 117144). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy.
go back to reference Tanwar, A. S., Hussain, S., Malik, A. H., Afroz, M. A., & Iyer, P. K. (2016). Inner filter effect based selective detection of nitroexplosive-picric acid in aqueous solution and solid support using conjugated polymer. ACS Sensors, 1 (8), 1070-1077. CrossRef Tanwar, A. S., Hussain, S., Malik, A. H., Afroz, M. A., & Iyer, P. K. (2016). Inner filter effect based selective detection of nitroexplosive-picric acid in aqueous solution and solid support using conjugated polymer. ACS Sensors, 1 (8), 1070-1077. CrossRef
go back to reference Liu, H., Li, M., Xia, Y., & Ren, X. (2016). A turn-on fluorescent sensor for selective and sensitive detection of alkaline phosphatase activity with gold nanoclusters based on inner filter effect. ACS Applied Materials & Interfaces, 9 (1), 120–126. CrossRef Liu, H., Li, M., Xia, Y., & Ren, X. (2016). A turn-on fluorescent sensor for selective and sensitive detection of alkaline phosphatase activity with gold nanoclusters based on inner filter effect. ACS Applied Materials & Interfaces, 9 (1), 120–126. CrossRef
go back to reference Chen, S., Yu, Y. L., & Wang, J. H. (2018). Inner filter effect-based fluorescent sensing systems: a review. Analytica Chimica Acta, 999, 13-26. CrossRef Chen, S., Yu, Y. L., & Wang, J. H. (2018). Inner filter effect-based fluorescent sensing systems: a review. Analytica Chimica Acta, 999, 13-26. CrossRef
go back to reference Tanwar, A. S., Adil, L. R., Afroz, M. A., & Iyer, P. K. (2018). Inner Filter Effect and Resonance Energy Transfer Based Attogram Level Detection of Nitroexplosive Picric Acid Using Dual Emitting Cationic Conjugated Polyfluoren. ACS sensors, 3 (8), 1451-1461. CrossRef Tanwar, A. S., Adil, L. R., Afroz, M. A., & Iyer, P. K. (2018). Inner Filter Effect and Resonance Energy Transfer Based Attogram Level Detection of Nitroexplosive Picric Acid Using Dual Emitting Cationic Conjugated Polyfluorene. ACS sensors, 3 (8), 1451-1461. CrossRef
go back to reference Kreno, L. E., Leong, K., Farha, O. K., Allendorf, M., Van Duyne, R. P., & Hupp, J. T. (2011). Metal – organic framework materials as chemical sensors. Chemical Reviews, 112 (2), 1105-1125. CrossRef Kreno, L. E., Leong, K., Farha, O. K., Allendorf, M., Van Duyne, R. P., & Hupp, J. T. (2011). Metal – organic framework materials as chemical sensors. Chemical Reviews, 112 (2), 1105-1125. CrossRef
go back to reference Chen, L. Y., Wang, C. W., Yuan, Z., & Chang, H. T. (2014). Fluorescent gold nanoclusters: recent advances in sensing and imaging. Analytical Chemistry, 87 (1), 216-229. CrossRef Chen, L. Y., Wang, C. W., Yuan, Z., & Chang, H. T. (2014). Fluorescent gold nanoclusters: recent advances in sensing and imaging. Analytical Chemistry, 87 (1), 216-229. CrossRef
go back to reference Formica, M., Fusi, V., Giorgi, L., & Micheloni, M. (2012). New fluorescent chemosensors for metal ions in solution. Coordination Chemistry Reviews, 256 (1-2), 170-192. CrossRef Formica, M., Fusi, V., Giorgi, L., & Micheloni, M. (2012). New fluorescent chemosensors for metal ions in solution. Coordination Chemistry Reviews, 256 (1-2), 170-192. CrossRef
go back to reference Zhang, J., Zhou, R., Tang, D., Hou, X. and Wu, P., 2018. Optically-active nanocrystals for inner filter effect-based fluorescence sensing: Achieving better spectral overlap. TrAC Trends in Analytical Chemistry. Zhang, J., Zhou, R., Tang, D., Hou, X. and Wu, P., 2018. Optically-active nanocrystals for inner filter effect-based fluorescence sensing: Achieving better spectral overlap. TrAC Trends in Analytical Chemistry.
go back to reference Liu, D., Wang, Z., & Jiang, X. (2011). Gold nanoparticles for the colorimetric and fluorescent detection of ions and small organic molecules. Nanoscale, 3 (4), 1421-1433. CrossRef Liu, D., Wang, Z., & Jiang, X. (2011). Gold nanoparticles for the colorimetric and fluorescent detection of ions and small organic molecules. Nanoscale, 3 (4), 1421-1433. CrossRef
go back to reference Shang, L., & Dong, S. (2009). Design of fluorescent assays for cyanide and hydrogen peroxide based on the inner filter effect of metal nanoparticles. Analytical Chemistry, 81 (4), 1465-1470. CrossRef Shang, L., & Dong, S. (2009). Design of fluorescent assays for cyanide and hydrogen peroxide based on the inner filter effect of metal nanoparticles. Analytical Chemistry, 81 (4), 1465-1470. CrossRef
go back to reference Han, L., Liu, S. G., Liang, J. Y., Ju, Y. J., Li, N. B., & Luo, H. Q. (2019).pH-mediated reversible fluorescence nanoswitch based on inner filter effect induced fluorescence quenching for selective and visual detection of 4-nitrophenol. Journal of Hazardous Materials, 362, 45-52. CrossRef Han, L., Liu, S. G., Liang, J. Y., Ju, Y. J., Li, N. B., & Luo, H. Q. (2019). pH-mediated reversible fluorescence nanoswitch based on inner filter effect induced fluorescence quenching for selective and visual detection of 4-nitrophenol. Journal of Hazardous Materials, 362, 45-52. CrossRef
go back to reference Gale, P. A., & Caltagirone, C. (2018). Fluorescent and colorimetric sensors for anionic species. Coordination Chemistry Reviews, 354, 2-27. CrossRef Gale, P.A., & Caltagirone, C. (2018). Fluorescent and colorimetric sensors for anionic species. Coordination Chemistry Reviews, 354, 2-27. CrossRef
go back to reference Dutta, M., & Das, D. (2012). Recent developments in fluorescent sensors for trace-level determination of toxic-metal ions. TrAC Trends in Analytical Chemistry, 32, 113-132. CrossRef Dutta, M., & Das, D. (2012). Recent developments in fluorescent sensors for trace-level determination of toxic-metal ions. TrAC Trends in Analytical Chemistry, 32, 113-132. CrossRef
go back to reference Yan, X., Li, H., & Su, X. (2018). Review of optical sensors for pesticides. TrAC Trends in Analytical Chemistry, 103, 1-20. CrossRef Yan, X., Li, H., & Su, X. (2018). Review of optical sensors for pesticides. TrAC Trends in Analytical Chemistry, 103, 1-20. CrossRef
go back to reference Rasheed, T., Bilal, M., Nabeel, F., Iqbal, H. M., Li, C., & Zhou, Y. (2018). Fluorescent sensor based models for the detection of environmentally-related toxic heavy metals. Science of the Total Environment, 615, 476-485. CrossRef Rasheed, T., Bilal, M., Nabeel, F., Iqbal, H. M., Li, C., & Zhou, Y. (2018). Fluorescent sensor based models for the detection of environmentally-related toxic heavy metals. Science of the Total Environment, 615, 476-485. CrossRef
go back to reference Zhou, Y., Zhang, J. F., & Yoon, J. (2014). Fluorescence and colorimetric chemosensors for fluoride-ion detection. Chemical Reviews, 114 (10), 5511-5571. CrossRef Zhou, Y., Zhang, J. F., & Yoon, J. (2014). Fluorescence and colorimetric chemosensors for fluoride-ion detection. Chemical Reviews, 114 (10), 5511-5571. CrossRef
go back to reference Wang, L., Cao, H. X., Pan, C. G., He, Y. S., Liu, H. F., Zhou, L. H., et al. (2019). A fluorometric aptasensor for bisphenol a based on the inner filter effect of gold nanoparticles on the fluorescence of nitrogen-doped carbon dots. Microchimica Acta, 186 (1), 28. CrossRef Wang, L., Cao, H.X., Pan, C.G., He, Y.S., Liu, H.F., Zhou, L.H., et al. (2019). A fluorometric aptasensor for bisphenol a based on the inner filter effect of gold nanoparticles on the fluorescence of nitrogen-doped carbon dots. Microchimica Acta, 186 (1), 28th CrossRef
go back to reference Wei, J., Yang, Y., Dong, J., Wang, S., & Li, P. (2019). Fluorometric determination of pesticides and organophosphates using nanoceria as a phosphatase mimic and an inner filter effect on carbon nanodots. Microchimica Acta, 186 (2), 66. CrossRef Wei, J., Yang, Y., Dong, J., Wang, S., & Li, P. (2019). Fluorometric determination of pesticides and organophosphates using nanoceria as a phosphatase mimic and an inner filter effect on carbon nanodots. Microchimica Acta, 186 (2), 66. CrossRef
go back to reference Si, F., Zou, R., Jiao, S., Qiao, X., Guo, Y., & Zhu, G. (2018). Inner filter effect-based homogeneous immunoassay for rapid detection of imidacloprid residue in environmental and food samples. Ecotoxicology and Environmental Safety, 148, 862-868. CrossRef Si, F., Zou, R., Jiao, S., Qiao, X., Guo, Y., & Zhu, G. (2018). Inner filter effect-based homogeneous immunoassay for rapid detection of imidacloprid residue in environmental and food samples. Ecotoxicology and Environmental Safety, 148, 862-868. CrossRef
go back to reference Zhao, Y., Zou, S., Huo, D., Hou, C., Yang, M., Li, J., et al. (2019). Simple and sensitive fluorescence sensor for methotrexate detection based on the inner filter effect of N, S co-doped carbon quantum dots. Analytica Chimica Acta, 1047, 179-187. CrossRef Zhao, Y., Zou, S., Huo, D., Hou, C., Yang, M., Li, J., et al. (2019). Simple and sensitive fluorescence sensor for methotrexate detection based on the inner filter effect of N, S co-doped carbon quantum dots. Analytica Chimica Acta, 1047, 179-187. CrossRef
go back to reference Barati, A .., Shamsipur, M., & Abdollahi, H., (2016). Metal-ion-mediated fluorescent carbon dots for indirect detection of sulfide ions. Sensors and Actuators B: Chemical, 230, 289-297. Barati, A .., Shamsipur, M., & Abdollahi, H., (2016). Metal-ion-mediated fluorescent carbon dots for indirect detection of sulfide ions. Sensors and Actuators B: Chemical, 230, 289-297.
go back to reference Shang, L., Qin, C., Jin, L., Wang, L., & Dong, S. (2009). Turn-on fluorescent detection of cyanide based on the inner filter effect of silver nanoparticles. Analyst, 134 (7), 1477-1482. CrossRef Shang, L., Qin, C., Jin, L., Wang, L., & Dong, S. (2009). Turn-on fluorescent detection of cyanide based on the inner filter effect of silver nanoparticles. Analyst, 134 (7), 1477-1482. CrossRef
go back to reference Zhang, D., Dong, Z., Jiang, X., Feng, M., Li, W., & Gao, G. (2013). A proof-of-concept fluorescent strategy for highly selective detection of Cr (VI) based on inner filter effect using a hydrophilic ionic chemosensor. Analytical Methods, 5 (7), 1669-1675. CrossRef Zhang, D., Dong, Z., Jiang, X., Feng, M., Li, W., & Gao, G. (2013). A proof-of-concept fluorescent strategy for highly selective detection of Cr (VI) based on inner filter effect using a hydrophilic ionic chemosensor. Analytical Methods, 5 (7), 1669-1675. CrossRef
go back to reference Li, Y., Cai, J., Liu, F., Yu, H., Lin, F., Yang, H., Lin, Y., & Li, S. (2018). Highly crystalline graphitic carbon nitride quantum dots as a fluorescent probe for detection of Fe (III) via an innner filter effect. Microchimica Acta, 185 (2), 134. Li, Y., Cai, J., Liu, F., Yu, H., Lin, F., Yang, H., Lin, Y., & Li, S. (2018). Highly crystalline graphitic carbon nitride quantum dots as a fluorescent probe for detection of Fe (III) via an innner filter effect. Microchimica Acta, 185 (2), 134.
go back to reference Dong, Y., Wang, R., Li, G., Chen, C., Chi, Y., & Chen, G. (2012). Polyamine-functionalized carbon quantum dots as fluorescent probes for selective and sensitive detection of copper ions. Analytical chemistry, 84 (14), 6220-6224. Dong, Y., Wang, R., Li, G., Chen, C., Chi, Y., & Chen, G. (2012). Polyamine-functionalized carbon quantum dots as fluorescent probes for selective and sensitive detection of copper ions. Analytical chemistry, 84 (14), 6220-6224.
go back to reference Chen, M., Kutsanedzie, F. Y., Cheng, W., Li, H., & Chen, Q. (2019). Ratiometric fluorescence detection of Cd 2+ and Pb 2+ by inner filter-based upconversion nanoparticle-dithizone nanosystem. Microchemical Journal, 144, 296-302. CrossRef Chen, M., Kutsanedzie, F. Y., Cheng, W., Li, H., & Chen, Q. (2019). Ratiometric fluorescence detection of Cd 2+ and Pb 2+ by inner filter-based upconversion nanoparticle-dithizone nanosystem. Microchemical Journal, 144, 296-302. CrossRef
go back to reference Liu, Y., Ouyang, Q., Li, H., Zhang, Z., & Chen, Q. (2017). Development of an inner filter effects-based upconversion of nanoparticles - curcumin nanosystem for the sensitive sensing of fluoride ion. ACS Applied Materials & Interfaces, 9 (21), 18314-18321. CrossRef Liu, Y., Ouyang, Q., Li, H., Zhang, Z., & Chen, Q. (2017). Development of an inner filter effects-based upconversion of nanoparticles – curcumin nanosystem for the sensitive sensing of fluoride ion. ACS Applied Materials & Interfaces, 9 (21), 18314-18321. CrossRef
go back to reference Gu, W., Pei, X., Cheng, Y., Zhang, C., Zhang, J., Yan, Y., et al. (2017). Black phosphorus quantum dots as the ratiometric fluorescence probe for trace mercury ion detection based on inner filter effect. ACS sensors, 2 (4), 576-582. CrossRef Gu, W., Pei, X., Cheng, Y., Zhang, C., Zhang, J., Yan, Y., et al. (2017). Black phosphorus quantum dots as the ratiometric fluorescence probe for trace mercury ion detection based on inner filter effect. ACS sensors, 2 (4), 576-582. CrossRef
go back to reference Xiao, S. J., Zhao, X. J., Hu, P. P., Chu, Z. J., Huang, C. Z., & Zhang, L. (2016). Highly photoluminescent molybdenum oxide quantum dots: one-pot synthesis and application in 2, 4, 6-trinitrotoluene determination. ACS Applied Materials & Interfaces, 8 (12), 8184-8191. CrossRef Xiao, S. J., Zhao, X. J., Hu, P. P., Chu, Z. J., Huang, C. Z., & Zhang, L. (2016). Highly photoluminescent molybdenum oxide quantum dots: one-pot synthesis and application in 2, 4, 6-trinitrotoluene determination. ACS Applied Materials & Interfaces, 8 (12), 8184-8191. CrossRef
go back to reference Almeida, M. I. G., Jayawardane, B. M., Kolev, S. D., & McKelvie, I. D. (2018). Developments of microfluidic paper-based analytical devices (μPADs) for water analysis: A review. Talanta, 177, 176-190. CrossRef Almeida, M. I. G., Jayawardane, B. M., Kolev, S. D., & McKelvie, I. D. (2018). Developments of microfluidic paper-based analytical devices (μPADs) for water analysis: A review. Talanta, 177, 176-190. CrossRef
go back to reference Bridgeman, J., Baker, A., Brown, D., & Boxall, J. B. (2015). Portable LED fluorescence instrumentation for the rapid assessment of potable water quality. Science of the Total Environment, 524, 338-346. CrossRef Bridgeman, J., Baker, A., Brown, D., & Boxall, J. B. (2015). Portable LED fluorescence instrumentation for the rapid assessment of potable water quality. Science of the Total Environment, 524, 338-346. CrossRef
go back to reference Zhang, D., Zhang, Y., Lu, W., Le, X., Li, P., Huang, L., et al. (2019). Fluorescent Hydrogel-Coated Paper / Textile as Flexible Chemosensor for Visual and Wearable Mercury (II) Detection. Advanced Materials Technologies, 4 (1), 1800201. CrossRef Zhang, D., Zhang, Y., Lu, W., Le, X., Li, P., Huang, L., et al. (2019). Fluorescent Hydrogel-Coated Paper / Textile as Flexible Chemosensor for Visual and Wearable Mercury (II) Detection. Advanced Materials Technologies, 4 (1), 1800201. CrossRef
go back to reference Xu, W., Ren, C., Teoh, C. L., Peng, J., Gadre, S. H., Rhee, H. W., et al. (2014). An artificial tongue fluorescent sensor array for identification and quantitation of various heavy metal ions. Analytical Chemistry, 86 (17), 8763-8769. CrossRef Xu, W., Ren, C., Teoh, C. L., Peng, J., Gadre, S. H., Rhee, H. W., et al. (2014). An artificial tongue fluorescent sensor array for identification and quantitation of various heavy metal ions. Analytical Chemistry, 86 (17), 8763-8769. CrossRef
go back to reference Kassal, P., Steinberg, M. D., Horak, E., & Steinberg, I. M. (2018). Wireless fluorimeter for mobile and low cost chemical sensing: A paper based chloride assay. Sensors and Actuators B: Chemical, 275, 230-236. CrossRef Kassal, P., Steinberg, M. D., Horak, E., & Steinberg, I. M. (2018). Wireless fluorimeter for mobile and low cost chemical sensing: A paper based chloride assay. Sensors and Actuators B: Chemical, 275, 230-236. CrossRef
go back to reference Belaïdi, F. S., Farouil, L., Salvagnac, L., Temple-Boyer, P., Séguy, I., Heully, J. L., et al. (2019). Towards integrated multi-sensor platform using dual electrochemical and optical detection for on-site pollutant detection in water. Biosensors & Bioelectronics, 132, 90-96. CrossRef Belaïdi, F.S., Farouil, L., Salvagnac, L., Temple-Boyer, P., Séguy, I., Heully, J. L., et al. (2019). Towards integrated multi-sensor platform using dual electrochemical and optical detection for on-site pollutant detection in water. Biosensors & Bioelectronics, 132, 90-96. CrossRef
go back to reference Adkins, J. A., Boehle, K., Friend, C., Chamberlain, B., Bisha, B., & Henry, C. S. (2017). Colorimetric and electrochemical bacteria detection using printed paper-and transparency-based analytic devices. Analytical Chemistry, 89 (6), 3613-3621. CrossRef